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Arginine (Arg) residues having pKa of 12.5 in proteins are
perceived to function as guanidinium cations to bind to anions such
as phosphates. Although acidic transition metals such as Zn2+ are
common in metalloproteins and in metal-activated enzymes, their
coordinate binding to Arg has not been proposed. Indeed, metal-
guanidinyl complexes are barely known and unexplored.1-3 A recent
success of Pt2+-guanidinyl complexes at pH 7.5 was ascribed to
specific circumstances; that is the highly acidic nature of Pt2+

lowered pKa values of guanidiniums by hydrophobic environment
or π acceptor (guanidine)-π donor (Pt2+) interaction.2,3 Herein we
report that guanidine can be a good ligand to Zn2+ in neutral pH
aqueous solution.

A new ligand, (2-guanidinyl)ethyl-cyclen (L1) 1 formed a stable
1:1 Zn2+ complex (ZnL1) 2b, which crystallized out as a 2ClO4-

salt from pH 7.5 aqueous solution (Scheme 1).4 X-ray crystal
structure analysis revealed a distinct coordination of the pendant
guanidine (through N18) to Zn2+ (Figure 1). Zinc(II) is thus five-
coordinate with four nitrogens of the cyclen ring (the average
Zn2+-N bond distance is 2.16 Å) and a nitrogen of guanidine (1.95
Å). A shorter bond length (1.31 Å) between C17 and N18 with
respect to those for C17-N16 (1.35 Å) and C17-N19 (1.35 Å)
implies that the Zn2+-bound N18 is an imine nitrogen.1

How does the guanidine in2 prefer Zn2+ over protons at neutral
pH? From potentiometric pH titration of the ligand L1 (1 mM) in
the absence and presence of 1 mM Zn2+ at 25 °C with I ) 0.1
(NaNO3), the pKa values of>12, 10.13, 8.45,<2, and<2 were
determined by the program “BEST”.5,6 In light of the pKa values
of 10.7, 9.7,<2, and<2 for cyclen (L2),7 the highest pKa value of

>12 for L1 was assigned to the pendant guanidinium ion. In Scheme
1, the Zn2+ complexation constant (logK (Zn(L1‚H+)) for 1‚H+ +
Zn2+ a Zn(L1‚H+)‚(H2O) (2a) and the deprotonation constant pKa-
(Zn(L1‚H+)) for 2a a 2b + H3O+ were 12.4( 0.1 and 5.9( 0.1,
respectively, at 25°C with I ) 0.1 (NaNO3).8 Zn2+-cyclen
complexes are good models of active centers of various zinc(II)
enzymes.9 For instance, the deprotonations from a Zn2+-bound water
(4a a 4b)10 and from a Zn2+-bound alcohol (5a a 5b)11 are facile
with the pKa values of 7.9 and 7.7, respectively. It is thus reasonable
that the deprotonation of the guanidinium for2a a 2b is facile
due to the close interaction between the Zn2+-bound water (or OH-)
and the guanidinium ion in2a. An apparent complex formation
constant, logKapp(ZnL1) was calculated to be 10.4 in comparison
to 11.0 for ZnL2 and 10.4 for ZnL3 at pH 7.4.12 The speciation
diagram for a mixture of 1 mM L1 and 1 mM Zn2+ as a function
of pH at 25°C with I ) 0.1 (NaNO3) indicates that the initially
formed Zn2+ complex Zn(L1‚H+)‚H2O 2a is populated most
abundantly (75%) at ca. pH 5.5 (Figure 2a).

Another interesting question with the Zn2+-guanidine bonding
in 2b was how labile is it in aqueous solution? We found that2b
did not catalyze the hydrolysis of 4-nitrophenyl acetate at pH 5.0-
9.0 (see the Supporting Information), unlike the catalytically reactive
nucleophiles4b10 and 5b.11 We then tested if an external (4-
nitrophenyl)phosphate (NPP) anion could displace the pendant
guanidine in2b. The dianionic NPP was a good ligand to Zn2+ in
4 to form an 1:1 complex with logKapp ) 3.1 at pH 5.6.13 Figure
3 compares the31P NMR (162 MHz) titration curves of NPP (5
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Figure 1. ORTEP drawing (50% probability ellipsoides) of ZnL1 complex
(2b). Selected bond distances (Å): Zn1-N2 2.188(2), Zn1-N5 2.125(2),
Zn1-N8 2.180(1), Zn1-N11 2.135(2), Zn1-N18 1.953(2), C17-N16
1.352(2), C17-N18 1.310(2), C17-N19 1.347(2).

Figure 2. (a) Speciation diagrams for a mixture of 1 mM1 + 1 mM Zn2+

as a function of pH at 25°C with I ) 0.1 (NaNO3). (b) Speciation diagrams
for a mixture of 1 mM2 + 1 mM NPP as a function of pH at 25°C with
I ) 0.1 (NaNO3). Other species in less than 5% are omitted for clarity.
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mM) with 1, 2, and4 at various pD, from which a 1:1 complex3b
formation with logKapp (2-NPP) of 3.7( 0.1 at pD 5.5( 0.1
was calculated.14 A structure of3b was assigned, as depicted in
Scheme 1. The ligand1 alone (mostly in the L1‚2H+ form) had
little interaction with NPP at pD 5.5( 0.1, see Figure 3.15 On the
basis of potentiometric pH titration, a speciation diagram was
obtained for a mixture of 1 mM2 and 1 mM NPP as a function of
pH at 25°C with I ) 0.1 (NaNO3) (Figure 2b).6 At higher pH, the
pendant guanidinium became deprotonated to displace the Zn2+-
bound NPP2- to yield2b. The apparent complexation constant, log
Kapp(2-NPP), of 4.0( 0.1 at pH 5.5 agreed reasonably well with
3.7 ( 0.1 obtained by the31P NMR method. A higher affinity of
NPP2- to Zn2+ in 2a over4a probably arose from the phosphate-
guanidinium interactions, as depicted in3b.

Colorless prisms were obtained from a mixture of2b and phenyl
phosphate (PP) in aqueous solution at pH 6.5. The X-ray crystal
structure analysis proved the 1:12-PP2- complex (3a), where the
Zn2+-bound PP2- is stabilized by hydrogen bondings with two
intermolecularly adjacent guanidinium protons (see the Supporting
Information). The intermolecular interactions may come from strong
crystal packing forces. The present facts may imply another function
of Arg residues in the active centers of zinc(II) enzymes.16,17
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Scheme 1

Figure 3. pH-dependent change (at pD 5.5, 7.5, and 9.5) of31P chemical
shift of NPP (5 mM) upon addition of1, 2, and4 in D2O at 35°C.
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